Descent for Quasi-coherent Sheaves on Stacks

نویسنده

  • SHARON HOLLANDER
چکیده

We give a homotopy theoretic characterization of sheaves on a stack and, more generally, a presheaf of groupoids on an arbitary small site C. We use this to prove homotopy invariance and generalized descent statements for categories of sheaves and quasi-coherent sheaves. As a corollary we obtain an alternate proof of a generalized change of rings theorem of Hovey.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoint Pairs for Quasi-coherent Sheaves on Stacks

In this paper we construct a pushforward-pullback adjoint pair for categories of quasi-coherent sheaves, along a morphism of algebraic stacks, which is represented in algebraic stacks over the site C = Affflat. The construction uses the characterization of algebraic stacks of [H3] and is based on the descent description of the category of quasi-coherent sheaves given in [H2]. We show that an es...

متن کامل

Sheaves on Artin Stacks

We develop a theory of quasi–coherent and constructible sheaves on algebraic stacks correcting a mistake in the recent book of Laumon and Moret-Bailly. We study basic cohomological properties of such sheaves, and prove stack–theoretic versions of Grothendieck’s Fundamental Theorem for proper morphisms, Grothendieck’s Existence Theorem, Zariski’s Connectedness Theorem, as well as finiteness Theo...

متن کامل

Derived Algebraic Geometry VIII: Quasi-Coherent Sheaves and Tannaka Duality Theorems

1 Generalities on Spectral Deligne-Mumford Stacks 4 1.1 Points of Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Étale Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Localic Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Quasi-Compactness of Sp...

متن کامل

Descent of Coherent Sheaves and Complexes to Geometric Invariant Theory Quotients

Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We give necessary and sufficient conditions for a G-equivariant coherent sheaf on X to descend to the GIT quotient X/G, or for a bounded-above complex of G-equivariant coherent sheaves on X to be G-equivaria...

متن کامل

Descent of Coherent Sheaves and Complexes to Geometric Invariant Theory Quotients: Draft

Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We give necessary and sufficient conditions for a G-equivariant coherent sheaf on X to descend to the GIT quotient X/G, or for a bounded-above complex of G-equivariant coherent sheaves on X to be G-equivaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008